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Direct Carbon Fuel Cell (DCFC) Generates Power 
from Reaction of Carbon and Oxygen 
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• High fuel cell efficiency:    80% of HHV based on ∆H°298 = 32.8 MJ/kg-C 
• Electrolyte is unconsumed and invariant

• Fixed C, CO2 activities full conversion of C
• Actual anode and cathode reactions may involve CO3

2- ion
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High C/air Efficiency is Derives from a Favorable 
Thermodynamics
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Efficiency of a fuel cell or battery is defined:
≡ (electrical energy out) / (Heat of combustion (HHV) of fuels input) 
= [theoretical efficiency G/H][utilization fraction µ][voltage efficiency εv]
= [∆G(T)/∆Hº][µ][V/Vº] = [µ][nFV]/ ∆Hº

--where ∆G(T) ≡ - nFVº ≡ ∆H-T∆S

Efficiency of a fuel cell or battery is defined:
≡ (electrical energy out) / (Heat of combustion (HHV) of fuels input) 
= [theoretical efficiency G/H][utilization fraction µ][voltage efficiency εv]
= [∆G(T)/∆Hº][µ][V/Vº] = [µ][nFV]/ ∆Hº

--where ∆G(T) ≡ - nFVº ≡ ∆H-T∆S

Typical C/air efficiency is 80%
Must adjust for Energy Cost of Fuel Production
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Current NAI and DOE/FE Efforts Evolved 
from Prior Research Activities

FY2002-3Allows stacking and refueling of small 
assemblies; discover of low-T 
materials (IL-10847 addendum)

Rigid cell

LDRD FY01-02
IL-10848

Developed cell enabling scale up, 
refueling, controlled wetting of carbon

Angled 
cell

LDRD FY00-02Structure, conductivity effects studied; 
Carbon anode mechanism proposed;
Data base of diverse fuels from slurry 
cells in full-cell configuration  

Anode 
R&D: 
rates and 
structure

CEES 1999
LDRD IL-10479

Particles + melt mimic rigid electrode
Experimental slurries in full cells

Particle 
anodes

CEES 1999Defined approach relating structure to 
rate; first full-cell experiments ever

Nano-
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Successful Scale-up of Powder-fed Cells*
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• Angle controls wetting
and prevents flooding
• Confines reaction zone to 
wetted carbon
• Discovered novel technique 
to promote wetting of C*

Anode CC

Pneumatic
refuel

Cherepy 2001

Tilted cell*

*Patent applications filed and pending

Basic configuration*



JFC:Aug-03 6

We have demonstrated >100 mA/cm2 at 80% 
efficiency with carbon black fuels

•State-of-the-art cathode

•Performance sustained until all fuel consumed (> 3 days)

•State-of-the-art cathode

•Performance sustained until all fuel consumed (> 3 days)
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Coal-Derived Carbons Show Promise
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Voltage Stability and Successful Scale-up
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We have studied the relationship between 
carbon structure and current density
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Disorder, Conductivity, Surface Area 
All Contribute to Carbon Discharge Rate

Note, low peak powers here due to old-style cathode

Sample Surf. Area 
(m2/g) 

Primary 
Particle Sizea 

(nm) 

Crystallinity 
Parameterb 

(rank) 

Peak 
Power 

(mW/cm2) 
Peach Pit AW activated carbon  >1000 30-3000 10 84 
Carbon aerogel powder, 
pyrolyzed at 1050 °C (glassy sp2 
carbon) 

1225 fibers, <1000 d. 
spheres, 20000-

100000 d. 

9 61 

Acetylene Black 
(from acetylene pyrolysis) 

75 40 
spheres 

8 61 

Coconut act carbon, AW, milled 1050 20 
spheres 

7 56 

Coal-derived act carbon, AW, 
milled  

950 60-10000 6 51 

Arosperse 15, thermal black 
(from methane pyrolysis) 

9 290 
spheres 

5 46 

Low Q Green Needle  
Pet. Coke, milled 

------------- 3000-100000 
needles 

4 48 

SB 635 Graphite particles 9 5000-100000 
stacked sheets 

3 42 

SO230-6 Pet Coke, 
heat treated, 1800 °C, milled  

9 3000-10000 
stacked sheets 

2 36 

Desulco Graphite particles ------------- 5000-30000 
stacked sheets 

1 46 

a from SEM  
b from XRD-  after H. Fujimoto, K. Tokumitsu, A. Mabuchi & T. Kasuh, Carbon 32, 1249-1251 

(1994). 

 
 
 

Source: Cherepy, Cooper & Ziagos UCRL-PRES-144849, June 2002
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Initial Research in Half-cell Configuration

V
Const I

• Measures anode polarization against Au/0.28 CO2, 0.14 O2
• Separate reference and voltage probe circuit
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Enhanced Performance at 650-700 °C
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• Properties of composites 
d = 0.56 g/cm3

ρ = 0.04 Ω-cm
• With separator, cathode at 

700 °C:
– 1 kW/m2 @ 80% eff.
– 4.5 kW/m2 peak power 

• Ongoing tests on 50 cm2

• Properties of composites 
d = 0.56 g/cm3

ρ = 0.04 Ω-cm
• With separator, cathode at 

700 °C:
– 1 kW/m2 @ 80% eff.
– 4.5 kW/m2 peak power 

• Ongoing tests on 50 cm2

• New materials composites (@ 675 °C) yield 2x  power of pastes 
at 800 °C
• Indicates 80% efficiency at 50-500 mA/cm2
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Two-Phase Anode Mechanism in Carbonate 
Proposed by Modification of Hall Anode Model

MECHANISM PROPOSED FOR HALL ELECTROLYTES AND 
MODIFIED FOR CARBONATES

2Al2O2F4
2- ↔ 2O2

2- + 2Al2OF4 Source of O2
2- in Hall cryolite

2CO3
2- ↔ 2CO2 + 2O2- Source of O2

2- in carbonate melts
Crs + O2- → Crs- O2- Adsorb O2- at reactive site (rs)
Crs- O2- → CrsO + 2e- Fast 1e- discharges: CO on rs

CrsO + O2- → CrsO-O2- RDS: second O2- adsorption
CrsO-O2- → CO2ad + 2e- Two 1e- discharges: CO2 on rs
CO2ad→ CO2 Fast desorption
Crs + 2CO3

2- → 3CO2 + 4e- (overall anode reaction)

MECHANISM PROPOSED FOR HALL ELECTROLYTES AND 
MODIFIED FOR CARBONATES

2Al2O2F4
2- ↔ 2O2

2- + 2Al2OF4 Source of O2
2- in Hall cryolite

2CO3
2- ↔ 2CO2 + 2O2- Source of O2

2- in carbonate melts
Crs + O2- → Crs- O2- Adsorb O2- at reactive site (rs)
Crs- O2- → CrsO + 2e- Fast 1e- discharges: CO on rs

CrsO + O2- → CrsO-O2- RDS: second O2- adsorption
CrsO-O2- → CO2ad + 2e- Two 1e- discharges: CO2 on rs
CO2ad→ CO2 Fast desorption
Crs + 2CO3

2- → 3CO2 + 4e- (overall anode reaction)

Fast

Requires polarization

• Mechanism gives rise to observed cell voltage dependences on CO2
-- E = E° + RT/4F ln [C][O2][CO2,cath]2/[CO2,an]3   [Vutetakis 1984] 

• Mechanism accounts for high C → CO2 efficiency measurements
•Our model of carbonate decomposition replaces Hall initiating step:

Al2O2F4
2- ↔ O2

2- + Al2OF4 with carbonate dissociation, 2CO3
2- ↔ 2CO2 + 2O2-

Hall Process mechanism after Haupin & Frank, Alcoa Tech Center [1981]
•Thonstad [1970] measured Tafel slopes, found too great for e- transfer to be RDS
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Summary of LLNL results 
• Invention of particle/melt slurry anodes integrated into cells

– Tested >20 materials; structure/reactivity theory 
• Nano-structural disorder, not purity, controls rate and 

efficiency
– Disorder, edge density, conductivity
– Useful disorder with HC pyrolyzed below 1200 ºC
– Mechanism proposed for full conversion, C→CO2

• Development of angled cell 
– Controls wetting and flooding
– Provides for scaleup and removal/replacement of salt

• New materials for plate systems
– Higher rates at lower T

• Similar polarization for carbon and cleaned coal
– Trade cost against electrolyte stability
– Role of H in coal not investigated
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Needed R&D in Anode Electrochemistry

1. Mechanism for the anodic reaction of coal, coke
--Reactions and mechanisms of H, N,S (bound and pyrite) under 

reducing conditions (E = -0.8 V vs Au/CO2,O2 )

2. Determine catalytic effects of impurities found in coal and 
coal-derived carbon: minerals, water

3. Transport of CO2, CO3
2-, particulates and carbon in anode 

and matrix; gradients of oxide and carbonate; role of water
4. Surface chemistry: functional groups, wetting and site 

reactivity
5. Adaptation of cathode structures and catalysts for specific 

needs of C/Air cell 
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